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Abstract

Geolocated social media data provides a powerful source of
information about place and regional human behavior. Be-
cause little social media data is geolocation-annotated, in-
ference techniques serve an essential role for increasing the
volume of annotated data. One major class of inference ap-
proaches has relied on the social network of Twitter, where
the locations of a user’s friends serve as evidence for that
user’s location. While many such inference techniques have
been recently proposed, we actually know little about their
relative performance, with the amount of ground truth data
varying between 5% and 100% of the network, the size of
the social network varying by four orders of magnitude, and
little standardization in evaluation metrics. We conduct a sys-
tematic comparative analysis of nine state-of-the-art network-
based methods for performing geolocation inference at the
global scale, controlling for the source of ground truth data,
dataset size, and temporal recency in test data. Furthermore,
we identify a comprehensive set of evaluation metrics that
clarify performance differences. Our analysis identifies a
large performance disparity between that reported in the lit-
erature and that seen in real-world conditions. To aid repro-
ducibility and future comparison, all implementations have
been released in an open source geoinference package.

1 Introduction
Social media provides a continuously-updated stream of
data which has proven useful for predicting group behaviors
and modeling populations. Associating data with the partic-
ular geolocation from which it originated creates a powerful
tool for modeling geographic phenomena, such as tracking
the flu, predicting elections, or observing linguistic differ-
ences between groups. However, only a small amount of
social media data comes with location; for example, less
than one percent of Twitter posts are associated with a ge-
olocation. Therefore, recent work has focused on geoin-
ference for predicting the locations of posts. One direc-
tion of geoinference using social networks has produced ap-
proaches that claim to accurately locate the majority of posts
within tens of kilometers of their true locations (McGee,
Caverlee, and Cheng 2013; Rout et al. 2013; Jurgens 2013;
Compton, Jurgens, and Allen 2014).
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Despite the significant interest in geoinference and re-
ported success of methods, examining current evaluation
practices reveals significant disparity between evaluation
settings. Moreover, the conditions in which methods have
been tested often do not mirror the real-world conditions in
which these methods are expected to operate. In particular,
data set sizes have varied by four orders of magnitude and
no agreement has been seen in (1) the source of ground truth
data, (2) what percentage of the dataset should already be
labeled with ground truth locations when training, and (3)
which evaluation metrics should be used. While these fac-
tors are not necessarily limitations of the algorithms, they
critically hinder comparability and obtaining a complete un-
derstanding of how state of the art performs at its intended
task.

Here, we conduct a critical evaluation of state of the art by
testing nine geolocation inference techniques, all published
recently in top-tier conferences. All methods were evaluated
on the same prediction task: given a Twitter post from an
arbitrary user, predict its geolocation as latitude and longi-
tude. We outline three criteria for geoinference and then in-
troduce corresponding evaluation metrics that can easily be
reproduced across datasets, ensuring methodological com-
parability in future works. In three experiments, we system-
atically assess (1) the accuracy of each algorithm in iden-
tical, real-world conditions, (2) the impact of how ground
truth is determined for training, and (3) the relationship be-
tween performance and time as models infer the locations of
posts created after the model was trained.

Our study makes three key contributions. First, we
demonstrate that real-world performance is often much less
accurate than reported in original experiments; and in par-
ticular, we find that several algorithms did not scale to real-
world conditions and even when algorithmic improvements
are made, did not produce accurate location inferences. Sec-
ond, we find that the standard practice of basing ground truth
on users’ self-reported locations consistently produces infe-
rior results: The established technique for extracting users’
self-reported locations identified significantly fewer user lo-
cations than reported in earlier studies –possibly suggesting
a shifting user behavior– and results in significantly worse
performance than if more-sparse GPS-based locations are
used as ground truth. Third, we show that the number of
posts able to be tagged by a trained model decreases by



half every four months due to the platform’s changing user
base, which given the complexity of some methods, raises
the issue of how to effectively retrain methods on increasing
amounts of data. As a part of the study, we release an open
source geoinference framework that includes implementa-
tions of all of the nine methods and proposed evaluation
metrics, lowering the bar for future comparisons.

2 Geolocation Inference Methods
Social network-based geoinference is built upon the find-
ing that relationships in social media are strong indicators of
spatial proximity (Wellman and Gulia 1999; van Meeteren,
Poorthuis, and Dugundji 2009). The spatial proximity of
friends is not limited to one social media platform or one
definition of friendship, with works showing that the dis-
tances of friends’ locations follow a power-law like distri-
bution for Facebook friends (Backstrom, Sun, and Marlow
2010), FourSquare friends (Jurgens 2013), Twitter follow-
ers (Gonzalez et al. 2011), and Twitter mentions (McGee,
Caverlee, and Cheng 2011).

Geolocation inference algorithms using Twitter require
two common parameters: (1) a definition of what consti-
tutes a relationship in Twitter to create the social network,
and (2) a source of ground truth location data to use in in-
ference. The nine geoinference methods analyzed here have
varied considerably in both parameters, as shown in Table
1, columns two and five. Despite GPS-annotated posts be-
ing rare in Twitter (>1% frequency) (Hecht et al. 2011), the
social networks used in testing by many methods been re-
stricted to only those users with a known location, which is
not a representative sample of the users and posts seen in
real-world conditions. Similarly, methods have been tested
on significantly different sizes of data, without discussions
of scalability in cases where a method is tested on relatively
small numbers of users or posts. Following, we discuss the
algorithms, how these different sources of information are
used, and their complexities.

Backstrom, Sun, and Marlow (2010) propose one of the
first geolocation inference methods using the social network
of Facebook. The ground truth is established using users’
self-reported addresses in Facebook, which were required
to include street numbers and therefore indicate highly-
precise locations. Inference begins by building a probabilis-
tic model representing the likelihood of observing a rela-
tionship between two users given the geographic distance
between them. Then, for each user, the known locations
of the user’s friends are each tested to identify the location
that maximizes the likelihood of it being the user’s location
given the geographic distribution of the friends’ locations.
Backstrom, Sun, and Marlow (2010) propose an efficient
method for computing the likelihoods, resulting in an overall
complexity of O(|V |k2) where V is the number of vertices
(users) in the graph and k is the average number of vertex
neighbors with known locations.

McGee, Caverlee, and Cheng (2013) extend the method
of Backstrom, Sun, and Marlow (2010), citing the difficul-
ties of adapting from Facebook to Twitter: (1) user-provided

data is significantly less precise in Twitter, (2) the geo-
graphic scale of the study moves from only within the United
States to a global scope, and (3) social relationships in Twit-
ter serve multiple roles, beyond signifying friendships. As
such, McGee et al. seek to classify a user’s Twitter relation-
ships according to the probability that they serve as strong
predictors of that user’s location. For ground truth, users
with at least three GPS posts are selected and the median
latitude and longitude values are selected as their location.

All relationships between located users are used to train
a tree regression model that predicts the actual distance be-
tween the users. These predicted distances are treated as
measurements of the predictive capabilities; a user’s social
relations are then sorted by capability into ten partitions to
identify the friends that are potentially most informative. For
inference, the edges in each partition are processed using a
similar method as in the Backstrom et al. model to predict
the likelihood of a user having an edge to a friend at that
location. The intuition is that by separating relationships
into different partitions, the location information in the parti-
tion with the most-predictive relationships will dominate the
likelihood calculation. In the absence of relationship parti-
tions, this method reduces to Backstrom, Sun, and Marlow
(2010).

Originally, this method was tested with all users labeled
with locations (cf. Table 1, col. 6), in which case the com-
plexity grows beyond that of Backstrom et al. to O(|V |ck2+
k|V |log|V |) where c is the number of partition for the tree
regression and the latter term in the complexity is the cost of
the regression. However, as the size of the network grows,
computing the regression model on all pairs of located user
dominates the run-time making the algorithm infeasible in
practice. Therefore, we train the regression using data from
a fixed number of users (50K) rather than |V |, which yielded
similar results in practice and allows the method to scale to
the size of networks used in this study.

Kong, Liu, and Huang (2014) propose several extensions
to the Backstrom, Sun, and Marlow (2010) model based on
strategies for weighting which of a user’s friends are likely
to be most predictive of their location. This method uses the
friendship definition of Huberman, Romero, and Wu (2009)
which is that a user a is friends with b if a has mentioned b
in at least two posts. Given a user, their friends are weighted
according to a social tightness coefficient, which is com-
puted as the cosine similarity of the two user’s friends.

Kong, Liu, and Huang (2014) diverges significantly from
the Backstrom, Sun, and Marlow (2010) model and McGee,
Caverlee, and Cheng (2013) extension by making the algo-
rithm operate in multiple passes. Initially, the network is
only sparsely labeled, preventing accurate inference on users
with few labeled neighbors. Therefore, multiple passes are
made through the network, using the previous pass’s inferred
locations as ground truth to infer the locations of other users.
This multi-pass approach allows their method to identify sig-
nificantly more users, though potentially at a cost of preci-
sion. The use of multiple passes and use of social closeness
raises the complexity of this extension to O(p|V |k3) where
p is the number of passes performed.



Method Type Users Edges Ground Truth % Labeled Multi-pass Output
Davis Jr et al. (2011) Bi-directional followers 24.7K -a GPS, GeoIP, Self-reported 40.3% no City Name
Li et al. (2012) Friends, Followers 139.1K 4.1M Self-Reported 100% no City Name
Li, Wang, and Chang (2012) Friends, Followers 139.1K 4.1M Self-Reported 100% no City Name
Rout et al. (2013) Friends, Followers 206.2K 9.8M Self-Reported 100% no City Name
McGee, Caverlee, and Cheng (2013) Friends, Followers 249.6K 81.2M GPS, Self-Reported 100% no GPS
Kong, Liu, and Huang (2014) Mentions 660.0K 19.4M GPS 22.5% yes GPS
Backstrom, Sun, and Marlow (2010) Facebook friendships 2.9M 30.6M Self-Reportedb 25.0%c no GPS
Jurgens (2013) Bi-directional mentions 47.8M 254M GPS 5.34% yes GPS
Compton, Jurgens, and Allen (2014) Bi-directional mentions 110.9M 1.03B GPS 11.1% yes GPS
a Statistics on the number of edges per user were not provided.
b Backstrom, Sun, and Marlow (2010) use self-reported numbered street addresses from Facebook which are more precise than self-reported city-level locations

found in Twitter.
c The network is fully labeled at the start but experiments are performed with 75% of locations removed.

Table 1: The nine evaluated network-based geoinference methods and their original testing conditions.

Li et al. (2012) (denoted Li12a) propose to infer geolo-
cation by taking into account the influence of both users and
of locations, capturing the intuition that some users are more
informative for predicting the locations of the neighbors.
The best-performing of their approaches first assigns users
to random locations and then iteratively updates the loca-
tions of users from their neighbors and mentioned location
names, refining the parameters in the update by measuring
the prediction error of users with already-known locations.
Each iteration of the algorithm requires O(|E|) operations,
giving a total complexity of O(t|E|) for t total iterations.
Li et al. provide a proof of convergence for the entire al-
gorithm. However, our datasets are significantly larger than
those used to test the method, and, as a result, we found it
necessary to restrict the number of iterations to a maximum
of five, allowing full completion of each updating step per
iteration.

Li, Wang, and Chang (2012) (denoted Li12b) recog-
nize that a user may relocate over the course of their so-
cial media history and therefore may have more than one
home location from which they posts. To uncover all of
a user’s home locations, relationships between users and
locations are modeled with a supervised extension to La-
tent Dirichlet Allocation (Blei, Ng, and Jordan 2003). A
graph is constructed from both the social relationships in
Twitter and the location names mentioned in a user’s posts,
with the generative model predicting the causes of edges
in the graph. The model is inferred from the statistics of
observed edges between users with known locations. Like
other network-based approaches (McGee, Caverlee, and
Cheng 2013; Kong, Liu, and Huang 2014), the Li, Wang,
and Chang (2012) approach attempts to separate out the
location-predicting relationships from those serving other
functions in Twitter by using the topics learned in the model
to specify relationship type.

Given the probability distribution over locations for a
user, this method selects the user’s home location as the most
probable. This home location is reported as the predicted
location of each of that user’s tweets. The computational
complexity of the model is dependent upon the complex-
ity of the topic model; however, in practice we found that
the model converged quickly but the overall runtime of the
method was dominated by the task of searching for location

names within a user’s post.

Rout et al. (2013) approach geolocation inference as a
classification task for assigning a user to one 4,295 cities in
the United Kingdom (UK) using a follower-based social net-
work. In their best-performing configuration, a SVM clas-
sifier was trained with three core features: (1) the cities of
a user’s friends, relative to the city’s respective number of
Twitter users, (2) the number of closed triads in a user’s so-
cial network residing in the same city, and (3) the number
of reciprocal following relationships a user has per city. The
method was originally evaluated only for users in the UK;
owing to the demographics of the UK, over 28% of the users
in the resulting evaluation dataset were located in a single
city (London).

The choice of an SVM classifier ultimately constrains
the method’s scalability. Originally, the algorithm used ra-
dial basis function (RBF) kernel for the SVM, which as
the authors note, significantly increases in training time as
more training instances are added. Further compounding
the computational cost is the number of unique city labels.
Multi-class SVMs are typically trained by constructing n
one-versus-rest binary classifiers, where n is the number of
classes. In the global setting with hundreds of thousands
of possible cities, training a multi-class SVM on all possi-
ble locations becomes computationally infeasible. To scale
the algorithm two changes were made (1) the RBF kernel
was replaced with a linear kernel, lowering training time
to O(|V |2) and (2) the number of unique locations was re-
stricted to the 5,000 locations most frequently seen in the
training data. With these improvements to scalability, the
method becomes O(|L||V |2) where L is the restricted set of
user locations.

Davis Jr et al. (2011) propose one of the simplest ap-
proaches where given a user, their location is inferred by
taking the most-frequently seen location among their social
network. Locations are defined in terms of cities and are
assigned to users on the basis of GPS or GeoIP data, when
possible, or the self-reported location field of a user’s profile.
The method was applied to a small set of users mentioning
certain terms on Twitter and restricted to only those users in
Brazil, which entailed using a Brazilian gazetteer for loca-
tion name matching. Although the algorithm is defined on a



single-user basis, if run on an entire network, the method is
equivalent to a single round of label propagation (Zhu and
Ghahramani 2002) where a user is assigned the location la-
bel of its neighbors, subject to addition criteria.

Jurgens (2013) extends the idea of location inference as
label propagation by interpreting location labels spatially.
Locations are inferred using an iterative, multi-pass proce-
dure. Like Kong, Liu, and Huang (2014), during one pass,
the location of each user is assigned as the geometeric me-
dian of the locations of all the user’s neighbors, with ground-
truth data providing the locations for the first pass. The use
of multiple passes allows the inferred user locations (rather
than ground truth) to be used when making new inferences,
potentially overcoming the problem of making inferences
when ground truth data is sparse. Calculating the geomet-
ric median from the locations of a user’s friends requires k2
operations, yielding an overall complexity of O(p|V |k2).

Compton, Jurgens, and Allen (2014) extend the method
of Jurgens (2013) to take into account edge weights in the
social network and to limit the propagation of noisy loca-
tions. Rather than calculate each user’s location as the ge-
ometric median of their friends’ locations, the Compton et
al. method weights locations as a function of how many
times users interacted, thereby favoring locations of friends
with whom there exists a stronger evidence of a close re-
lationship. Furthermore, during each iteration’s inference, a
user’s location may only be updated if the new location is not
too distant from the locations of the neighbors, thereby pre-
venting the propagation of erroneous location information
through the network. However, these algorithmic extensions
do not change the complexity of the original algorithm, mak-
ing the approach still O(p|V |k2).

3 Evaluation
Prior evaluations of geoinference methods have had little
standardization in the metrics used to measure performance,
which significantly reduces comparability between results.
Furthermore, the existing metrics often test for different ca-
pabilities, so when only one metric is reported, an incom-
plete view is given of a method’s performance. There-
fore, we propose three essential evaluation criteria by which
methods should be measured: (1) accurate inference of a
post’s location, (2) accurate inference of all the posts gen-
erated by a user, and (3) maximizing the number of posts
whose location is able to be inferred. The first criteria pro-
vides insight into how accurate the method may be for an
arbitrary post, which is in some way the most fundamental
reason for performing geoinference. The second user-based
criteria, while similar to the first, is necessary for two rea-
sons. First, given that users post in different volumes, the
value of any post-based metric is biased by the users who
post most frequently. User-based metrics provide a way of
separating volume from accuracy and can provide a reliable
estimate of the expected error for an arbitrary user, which
may not be evident from post-based metrics alone. As a re-
sult, post-based and user-based metrics act analogously to

micro- and macro-averaged precision. Second, many down-
stream algorithms that require geolocated data operate on
users rather than tweets (e.g., flu trends, election prediction)
and therefore the accuracy with which a given user can be
located quantifies the scale at which such user-based studies
can be performed. Finally, the third criteria is necessary for
distinguishing approaches on the basis of how much data
may be located, which allows observing a method’s trade-
off between accuracy and coverage. Following, we summa-
rize the current types of evaluation metrics and then propose
three complementary metrics for evaluating methods by post
and by user.

Prior Metrics
Five main metrics have been proposed for evaluating geolo-
cation inference methods both at the tweet level and user
level. The first approach evaluates geoinference methods
that predict a city or produce a ranking of cities accord-
ing to each being the city from which the tweet originates
(Davis Jr et al. 2011; Rout et al. 2013). Inferences are
measured using Precision@k which reports the percentage
of location inferences in which correct location is within the
k highest-ranked locations of the prediction; when k=1, the
metric is equivalent to the traditional definition of Precision.
While the metric has a clear interpretation, Precision@k
lacks any notion of how distant the predicted location is from
the actual location, so nearby answers are treated as equally
incorrect as distant answers. This limits the metric’s ability
to measure the first criteria.

The second approach evaluates systems using
Accuracy@k, which measures the percentage of pre-
dictions that are within k distance units (e.g., kilometers
or miles) of the true location (Li et al. 2012; Li, Wang,
and Chang 2012; McGee, Caverlee, and Cheng 2013;
Rout et al. 2013). Accuracy@k has the advantage that it
is applicable to both city- and GPS-reporting geoinference
methods. However, the metric is sensitive to the choice in
k: low k values can make the precision scores of methods
identical, regardless of how far above k their predictions
were, and similarly, large k values can create similar pre-
cision scores for two methods, even if one is significantly
more accurate. As a result, many analyses report multiple
values of k, making it difficult to summarize the overall
performance of a system and compare approaches from
analyses reporting different k. The need for multiple k val-
ues to capture performance makes Accuracy@k unsuitable
for providing a single statistic to measure the post-based
and user-based criteria.

A third approach reports the average error distance (Li
et al. 2012; McGee, Caverlee, and Cheng 2013; Kong, Liu,
and Huang 2014). The average error provides a useful single
statistic for comparing approaches. However, the error dis-
tance when choosing the location of a friend follows a power
law curve (Rout et al. 2013; Jurgens 2013), which does not
have a well defined mean given the exponent of the error
distribution (Newman 2005). Furthermore, the mean value
is not robust to outliers in the error distribution (e.g., large
errors from predicting the location of a traveling user) and
can therefore overestimate the expected error.
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Figure 1: The CDF of location prediction errors for all nine
methods, generated from five-fold cross-validation on one
month of data.

A fourth approach reports performance using a cumula-
tive distribution function (CDF) which shows the percentage
of inferences having an error less than x kilometers away
from the true location (Backstrom, Sun, and Marlow 2010;
Rout et al. 2013; Jurgens 2013; Compton, Jurgens, and Allen
2014). Hence, the CDF represents Accuracy@k for all val-
ues of k and reports the full underlying error distribution of
the method. While the CDF lends itself to easy visual com-
parison, the lack of a quantifiable statistic of performance
limits its ability to compare approaches from different anal-
yses and subsequent use as an evaluation metric for the pro-
posed criteria.

Finally, a fifth recent evaluation approach considers the
cases in which the predictions of geoinference method
are probability distributions over a geographic area (Pried-
horsky, Culotta, and Del Valle 2014). However, as no
network-based method predicts probability distributions, we
do not consider this type of evaluation further.

Proposed Metrics
We propose one metric for each of the three desired criteria
identified earlier.

AUC The first metric measures post accuracy and extends
the intuition behind Accuracy@k by computing a single
statistic from the CDF of a method’s error per post, which
is equivalent in definition to a curve representing Accuracy
for all values of k. For clarity, we define the metric in terms
of a CDF F (x) = P(distance ≤ x) where x is a distance,
though we note that P (x) and k are fully analogous to Ac-
curacy and k. As shown in Figure 1, the area under the
curve (AUC) of a CDF provides a statistic for quantifying
a system’s overall performance, where systems which make
highly accurate predictions in the majority of cases (i.e.,
have high values of F (x) for low values of x) maximize their
AUC. Furthermore the AUC provides an easily comparable
and reproducible value which removes the need to use visual
comparison as done in prior works using CDFs for evalua-
tion (Backstrom, Sun, and Marlow 2010; Rout et al. 2013;

Jurgens 2013; Compton, Jurgens, and Allen 2014).
Two adjustments are made when calculating the value of

the AUC. First, as predictions become further from the ac-
tual locations, the degree to which they are incorrect be-
comes less important in measuring the total accuracy of
the system. For example, the difference in performance
(as indicated in the metric’s value) between system a with
Fa(1km) = 0.7 and a system b with Fb(100km) = 0.7
should be larger than the difference between two systems c
and d with Fc(9000km) = 0.7 and Fd(9100km) = 0.7, re-
spectively, reflecting the intuition that the first system is sig-
nificantly better than the second, while there is little practical
difference between the third and fourth systems. Hence, the
penalty for an inaccurate prediction should scale inversely
with distance. Therefore, the CDF curve is computed from
a log-scaled x value, F (x) = P(distance ≤ logx), in which
case the majority of the AUC value comes from prediction
accuracy for low values of x; this log scaling matches that
used in prior work when visualizing CDFs for comparing
geoinference methods. Second, because the maximum error
for any prediction is bounded by the Earth’s circumference,
for ease of interpretation, we normalize the AUC to be in
[0, 1], in which case the area under the normalized curve has
a maximal value of 1 if all of a method’s predictions have no
error and the area has a minimal value of 0 if all predictions
are the furthest distance possible from the actual location.
As a result, the normalized AUC provides a single measure
for post-based accuracy for the first criterion.

Median-Max To quantify user-based accuracy for the sec-
ond criteria, user-based error, we adopt a statistic that re-
flects the expected worst-case distance error per user. The
highest error is identified from all predictions for a user’s
posts and then the median of these errors across all users is
reported. This error value provides an intuitive way of char-
acterizing the expected accuracy of a user’s predictions: half
of the users have a maximum error of at most this distance.1
For simplicity, we refer to this metric is as Median-Max.

Post Coverage The third metric measures, Post Coverage,
is defined as the percentage of tested posts for which a geoin-
ference method can predict a location. Post Coverage is es-
sential for measuring how much of the total posting volume
a geoinference method is capable of tagging. Post Cover-
age also represents a challenging metric for network-based
geoinference methods, which are only able to predict loca-
tions for users in their underlying social network and there-
fore may be unable to infer locations for frequently-posting
users that do not have social relationships (i.e., are not in the
network).

4 Experimental Setup
Geoinference systems were built from identical training data
to control for (1) the size and type of social network and (2)
the source of ground truth used to seed the network with

1Other user-based errors were considered, such as the median
of the median user errors, which yielded identical system rankings.
We opted for the Median-Max to maximize ease of interpretation.



user’s initial locations. Following, we describe the data col-
lection procedure and resulting dataset.

Data collection method A training dataset was collected
from a 10% sample Twitter posts during August 2014. This
resulted in 1.3B tweets from which we constructed a social
network. Though many types of networks are possible for
representing the users in these posts, bi-directional mentions
were selected to form the social network due to (1) their
known efficacy in predicting locality (McGee, Caverlee, and
Cheng 2011; Jurgens 2013; Compton, Jurgens, and Allen
2014), which makes them functionally equivalent to the fol-
lower networks used in some methods prior evaluations, and
(2) being easier to obtain in constructing large social net-
works than when using following relationships, the collec-
tion of which is limited by Twitter API rate restrictions. The
final social network used for training the models contained
15,238,513 users and 26,429,346 edges.2 The choice was
made to limit the training dataset to only one month due to
practical reasons. While some methods have been tested on
larger networks, our training network still contains three or-
ders of magnitude more users than have been used in the
evaluations of most methods (cf. Table 1) and represents a
realistic amount of data with which a geoinference method
would be expected to produce accurate results.3

Ground Truth Geoinference methods have used two
sources of ground truth for training the models. The first
source is the user’s self-reported profile location, which has
been reported to frequently contain city-level location names
(Hecht et al. 2011). Cheng, Caverlee, and Lee (2010) pro-
pose the most widely-used heuristic of parsing a user’s self-
reported location by matching it with a “City, State” pat-
terns. However, Cheng, Caverlee, and Lee (2010) and the
several network-based methods using the heuristic have each
evaluated their methods only in a single English-speaking
countries (either the United States or the United Kingdom),
Therefore, to account for countries in which users would do
not report their state or province when describing the city,
the pattern was extended to match “City, Country.” Further-
more, we also allow self-reported locations to match the pat-
tern of “City” if the city name is unambiguous and occurs in
only one country.

As an initial gazetteer, we adopt Geonames, a large ge-
ographical database that covers much of the world and is
free to use under open source licenses.4 Importantly, the
Geonames database also includes (1) alternative names of
the city, including a limited set of alternatives in different

2For comparison, constructing a bi-directional follower-based
network for the same set of users would take approximately 29
years to complete given Twitter’s current API rate limits.

3All experiments were also performed using a range of larger
training sets from the one-month size reported here to a much larger
six-month size with a 44M user network and 1.5B tweets. All of
these training datasets yielded similar results to those presented
here (with only changes to metrics’ values but not method ranks)
and therefore, for ease of presentation and replicability, we report
only results for the one-month August dataset.

4http://www.geonames.org/

languages or the population’s native script, and, (2) where
possible, population sizes. These two piece of informa-
tion enable creating a larger set of possible city expressions
and, following Rout et al. (2013), resolving ambiguous city
names to the most populous city. Combining all alternative
names resulted in a set of 7,587,458 possible city names,
with 2,810,211 ambiguous names resolved to a single loca-
tion based on population size.

Our extension of Cheng, Caverlee, and Lee (2010) with
the Geonames gazetteer identified locations for 515,653
users (3.4%); this percentage is significantly lower than the
coverage reported in other works (Cheng, Caverlee, and Lee
2010; Jurgens 2013); we attribute this lower coverage to test-
ing an increasingly-global user base who may report loca-
tions in multiple languages (Liu, Kliman-Silver, and Mis-
love 2014) and increased privacy concerns that may inhibit
users from providing their location (Jeong and Coyle 2014).

As an alternate, second source of ground truth user lo-
cation, we use GPS-annotated posts to infer a home lo-
cation for users. Following prior work (Jurgens 2013;
Compton, Jurgens, and Allen 2014; Kong, Liu, and Huang
2014), we require users to have at least five GPS-annotated
posts within 15km of each other and the median absolute
deviation of the distances in these posts is no greater than
30km, ensuring that home locations are only reported for
mostly geo-stationary users. GPS-derived home locations
were identified for 402,009 users (2.6%).

The choice in self-reported or GPS-derived locations
highlights a trade-off in the source of ground truth: although
GPS data potentially provides a highly-accurate picture of
where a user was, GPS-based locations cover 20% less of the
network than the potentially-noisier self-reported locations.
Models were trained using each source of data in order to
measure this effect on performance.

Baseline Fundamentally, social-network based geoinfer-
ence methods vary in how they incorporate the location in-
formation of a user’s immediate social network for deciding
that user’s location. Therefore, as a baseline for compari-
son, we consider a system called Random Neighbor that per-
forms a similar operation but removes any knowledge from
how neighbors’ locations are used. The baseline (1) assigns
a user’s location from a randomly-selected already-located
neighbor and (2) repeats this assignment process for all users
for k iterations in order to propagate locations through the
network. The value of k was set to four in order to allow
locations to propagate through the network for most users.

5 Experiment 1: Cross-Validation
In prior evaluations of the methods considered here, each
method was compared with only one other system, making
it impossible to know how these different methods actually
compare. Therefore, as a first experiment, we evaluate all
nine methods and the baseline in a common setting, on iden-
tical data, using consistent sources of ground truth, and mea-
suring performance with the proposed evaluation metrics.

Setup Methods were tested using five-fold cross valida-
tion: users with ground-truth locations are partitioned into



five sets, with four used for training and one for testing. Ac-
curacy for users in the test set is always measured accord-
ing to deviation from the GPS locations of their tweets, ir-
respective of the users’ ground truth; i.e., accuracy is never
measured in terms of how close a prediction was to a self-
reported location.

Because this experiment uses a subset of the available
data, we report User Coverage instead of Tweet Coverage.
User Coverage measures the percentage of users in the net-
work for which a location was inferred. Because the meth-
ods are limited to predicting locations only for those users
in the social network, User Coverage provides a way of as-
sessing how much of the network it can use for prediction.

Results Quite surprisingly, cross-validation revealed sig-
nificant performance difference between systems, with some
performing well below the baseline. Table 2 shows the per-
formance of the nine systems and baseline across the three
metrics, with Figure 1 showing the CDF used to compute the
corresponding AUC value when using GPS-based locations.

Four trends are notable. First, six of the methods out-
perform the baseline, differing only by 0.016 in AUC and
44.9km in their Median-Max error when using GPS-based
ground truth. However, the six methods vary widely in terms
of coverage. While the method of Davis Jr et al. (2011)
has the lowest Median-Max error, it finds locations for only
13.1% of the network; in contrast, the methods of Compton,
Jurgens, and Allen (2014) has a 4km increase in Median-
Max error but identifies locations for an absolute increase in
user coverage of 47.5%, amounting to locations for 6.96M
more users. Indeed, the two other multi-pass methods of
Kong, Liu, and Huang (2014) and Jurgens (2013) both at-
tain higher coverage while still maintaining relatively high
accuracy.

Second, the three metrics effectively capture the strengths
and weaknesses of the models. For example, while Back-
strom, Sun, and Marlow (2010) and Jurgens (2013) have
similar AUC values, the former has a Median-Max error
30.2km lower, indicating the method provides tighter pre-
diction error bounds per user; however, the latter method
covers 43.4% more users (6.6M). Presenting all three statis-
tics allows end-users to make an informed decision on which
methods match their accuracy or volume requirements.

Third, the scale of testing conditions originally used with
the methods was predictive of their performance in this real-
world setting. The methods originally tested with fully-
labeled networks or on small network sizes performed below
the baseline in their geoinference ability (cf. Table 1). While
this result does not negate their performances in the original
experiments, our findings reiterate the need to match exper-
imental conditions with those seen in the real world.

Fourth, the use of self-reported locations as ground truth
degrades both accuracy and user coverage, compared with
GPS. Despite having 30% more ground truth for individuals,
these locations were not distributed throughout the network
in such a way to increase the overall number of individuals
for which a location could be inferred. The lone exception
to this trend is Davis Jr et al. (2011), which does seem an
improvement in AUC and Median-Max, but has a dramatic

GPS Geonames
Method AUC Median-Max User Cov. AUC Median-Max User Cov.
Dav11 0.633 57.2km 0.131 0.725 28.3km 0.014
Li12a 0.123 7738.9km 0.788 0.108 8028.0km 0.788
Li12b 0.386 4312.0km 0.617 0.217 6711.3km 0.591
Rout13 0.225 6942.7km 0.788 0.217 6520.8km 0.788
McG13 0.617 74.6km 0.223 0.492 293.0km 0.078
Kong14 0.596 127.4lkm 0.609 0.447 418.8km 0.534
Back10 0.622 71.9km 0.223 0.503 278.5km 0.026
Jurg13 0.620 102.1km 0.657 0.477 333.5km 0.623
Comp14 0.656 61.2km 0.606 0.509 250.6km 0.556
Rand. N. 0.559 182.5km 0.657 0.421 509.7km 0.623

Table 2: Performance during cross-validation of the training
data, using either GPS-based or Geonames-based sources of
ground truth.

drop in coverage and is only able to infer locations for 1% of
all users. Multi-pass methods such as Kong, Liu, and Huang
(2014) were less affected by the error from self-reported lo-
cations; because these methods may infer new user locations
from previously-inferred locations, they were more robust
to the arrangement of self-reported locations within the net-
work and did not see as large of a decrease in user coverage.

6 Experiment 2: Self-reported Locations
Many geoinference methods have incorporated self-reported
locations as ground truth. However, Experiment 1 re-
vealed that performance using the standard approach to self-
reported locations yielded much worse performance than
GPS-based locations. This large decrease in performance
raises the question of whether self-reported locations could
still be used as a reliable source of information if a differ-
ent gazetteer was used. No existing work has examined the
impact of gazetteer choice on performance and therefore in
Experiment 2, we test the performance impact of gazetteer
choice using four large gazetteers: Geonames, GeoLite, DB-
pedia, and Google.

Setup All nine methods and the baseline were trained us-
ing an identical cross-validation setup from Experiment 1,
only varying which gazetteer is used to map self-reported lo-
cations to coordinates according to the procedure described
in Section 4. The Geonames gazetteer data remains un-
changed from prior experiments and included for compar-
ison. The GeoLite gazetteer5 is a collection of GPS coordi-
nate for 459,943 cities and is publicly available, licensed un-
der the Creative Commons Attribution-ShareAlike 3.0 Un-
ported License. All city names are reported in Latin charac-
ters and no population information is available for resolving
ambiguous locations references. In cases of ambiguity, a self
reported location is not matched to any city.

DBpedia is an structured form of Wikipedia that is queri-
able. DBpedia is a potentially rich source of information, as
it contains all the geographic coordinate information from
Wikipedia as well as localizations of some cities in their na-
tive script (e.g., 東京都 for Tokyo), which can potentially
recognize additional self-reported locations. The final list
of cities was built by finding all DBpedia entries of type
Settlement that had population, geographic coordinates,

5
http://dev.maxmind.com/geoip/legacy/geolite/



Geonames DBpedia GeoLite Google
Method AUC Median-Max User Cov. AUC Median-Max User Cov. AUC Median-Max User Cov. AUC Median-Max User Cov.
Dav11 0.725 28.3km 0.014 0.741 22.7km 0.003 0.690 33.1km 0.019 0.712 20.2km 0.028
Li12a 0.108 8028.0km 0.788 0.094 9375.4km 0.788 0.110 7971.4km 0.788 0.545 8112.0km 0.788
Li12b 0.386 4312.0km 0.617 0.164 7378.3km 0.576 0.221 6720.7km 0.598 0.315 2069.8km 0.261
Rout13 0.217 6520.8km 0.788 0.234 6120.1km 0.788 0.234 6120.1km 0.788 0.231 6167.8km 0.158
McG13 0.492 293.0km 0.078 0.419 344.4km 0.010 0.512 249.4km 0.144 0.520 199.7km 0.133
Kong14 0.447 418.8km 0.534 0.337 806.9km 0.280 0.469 329.8km 0.548 0.483 312.8km 0.538
Back10 0.503 278.5km 0.026 0.428 338.0km 0.024 0.520 246.3km 0.144 0.527 193.7km 0.133
Jurg13 0.477 333.5km 0.623 0.331 948.1km 0.452 0.490 295.7km 0.629 0.512 256.9km 0.624
Comp14 0.509 250.6km 0.556 0.338 916.3km 0.462 0.517 240.8km 0.573 0.543 171.4km 0.566
Rand. N. 0.421 509.7km 0.623 0.310 1215.0km 0.452 0.437 399.7km 0.629 0.455 381.7km 0.624

Table 3: System performance when varying the gazetteer used to identify self-reported locations.

and were located in a country, which produced 255,094
cities. Recording all the variants resulted in 39,621,877
initial lexicalizations. Resolving ambiguities and removing
naming variants of mixed orthographic scripts produced a
final set of 11,735,961 location names.

A point of concern for the existing three gazetteers is
that their list of locations does not match the most likely
cities from which people tweet. Therefore, for the fourth
source, we manually construct our own gazetteer using the
Google reverse geocoder service, which returns a descrip-
tive name for a latitude and longitude. Using a held-out set
of three months of a 10% sample of Twitter data, the lat-
itude and longitude values of all GPS-tagged tweets were
aggregated and sorted by frequency. Building the gazetteer
for all 89.2M unique GPS locations is infeasible due to the
service’s rate limit of 2,500 queries per day. Therefore, the
reverse geocoder service was queried for the name of each
location, beginning with the most frequently seen locations
to maximize coverage. Our final gazetteer was created after
seven months of querying, comprising locations for 536,265
points, with 12,324 unique city names. We refer to this
gazetteer as Google.

Results Despite the three orders of magnitude difference
in the number of location name variations between the
gazetteers, roughly the same number of self-reported loca-
tion names were matched: 515,653 using Geonames, 75,253
using DBpedia, 589,449 using GeoLite, and 527,638 using
Google. Table 3 shows the methods’ resulting performances.

Three important trends emerge. First, DBpedia extracted
the fewest locations, highlighting an important limitation
the resource. The inconsistent markup of cities within
Wikipedia results in some large cities not being recorded as
Settlements within DBpedia. As a result, methods using the
DBpedia gazetteer observe lower recall from omitting these
cities; furthermore, because these locations are never present
in the network, multi-pass methods see a greatly increased
error rates from propagating the remaining inaccurate loca-
tions to individuals whose true locations cannot be extracted.
To be fair, additional engineering could potentially recover
more locations from DBpedia, but considering the extensive
efforts made with this resource beyond that of other papers,
future works must take care in how this resource is used to
ensure replicability.

Second, despite the Google gazetteer having the fewest
number of names (12,324), methods using it have the best
performance on all three metrics. An analysis of the naming
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Figure 2: Training times on the one-month training data set.
Methods marked with a * were those for which we had to
provide algorithmic performance improvements.

matches revealed two reasons for the improved performance.
First, because the gazetteer was created from the most fre-
quent GPS locations seen in the data, the city name list in-
cluded all the major cities omitted in the other gazetteers.
Second, because the gazetteer is small, it contains few cities
with ambiguous naming; the city names that are ambigu-
ous in other gazetteers are automatically resolved to the city
most likely to be tweeted from by virtue of the gazetteers
construction. Nevertheless, the gazetteer does omit many
moderately-sized cities and because the API-based data is
proprietary, the gazetteer cannot be freely shared, limiting
its utility.

Third, in the most-accurate setting using the Google
gazetteer, methods obtained nearly identical User Coverage
as with GPS-based locations (Table 2, col. 3) but in most
cases had more than double the Median-Max error. This
result suggests that with the current method of extracting
self-reported locations, this source of information results in
uniformly-worse accuracy. However, future work may po-
tentially still obtain better results with self-reported loca-
tions by targeting only highly-accurate self-reported loca-
tions or identifying more initial users’ locations through re-
solving short ambiguous city references in the location field.

7 Experiment 3: Temporal Decay
Geoinference models are expected to perform on a dynamic
platform, with new users regularly joining and with existing
users posting again after a dormant period. A natural so-
lution to the challenge of new users is to add new training
data. However, training a geoinference model can be com-



putationally expensive. Figure 2 shows the average train-
ing times for constructing a model from the full one month
dataset described in Section 4.6 Furthermore, none of the
models scale linearly with the amount of data, so increasing
the amount of training data can make retraining prohibitively
expensive and raises questions about how practical is a par-
ticular approach. Therefore, in this third experiment, we
evaluate how each geoinference method changes in accuracy
and coverage when predicting locations for novel Twitter
data created at increasingly-distant points in time after the
last date seen in the training data. Further, this experiment
examines the degree to which cross-validation performance
is predictive of future performance by the models.

Setup All nine methods and the baseline were trained on
the full August 2014 dataset (Sec. 4) using GPS data for
ground truth, which provided the best performance in earlier
experiments. Then, a test set was built from a 10% sample of
Twitter data for each day in the following month (Septem-
ber) for a total of 30 distinct test sets with an average of
41.7M tweets per day. Each trained method then predicted
the locations of all tweets seen in each of the 30 days in the
test set. AUC, Median-Max, and Post Coverage were calcu-
lated for each day of the test set. To control for the influence
of ground truth in the accuracy measurements, we calculate
AUC and Median-Max only for those tweets produced by
users who did not have ground truth locations in the training
data. Since most methods retain the ground-truth locations
of users in the model, were tweets from these users to be
included, AUC and Median-Max would reflect the degree
to which the ground truth predicted these users’ tweet loca-
tions, rather than the predictive ability of the user locations
inferred by the model.

Results Geoinference performance uniformly declined
across all methods. Figure 3 shows the decline in AUC and
Post Coverage for each method; Median-Max performances
were similar to AUC and we omit them for brevity. Geoin-
ference methods saw decreases between 14.6% and 25.8%
in Post Coverage, which for all methods was highly nega-
tively correlated with time, with a mean Pearsons r=-0.88.
This decay in performance suggests that in the best case, a
method’s Post Coverage half life is roughly four months be-
fore it is only able to infer half of the tweets compared to
when it was initially trained.

However, unlike Post Coverage, AUC decreased only
slightly, indicating that the location predictions made by the
method are robust across time. Methods’ change in AUC
varied from +0.8% to −9.4%. Surprisingly, the AUC did
not drop significantly for methods with the highest cover-
age (e.g., Jurgens (2013) and Compton, Jurgens, and Allen
(2014)) indicating that even though these multi-pass meth-
ods use inferred locations to infer new locations, the quality
of their predictions remains high.

Finally, we note that Post Coverage improved as much
as 5% for all methods on the weekends (seen as the small

6As a further example, training all the models for Experiments
1 and 2 required over 37 days of compute time on a state-of-the-art
dedicated server –ignoring development and testing compute time.

 0

0.2

0.4

0.6

0.8

 5  10  15  20  25  30
 0

 0.2

 0.4

 0.6

5 10 15 20 25 30
Number of days removed from the end of trai

AU
C

Po
st

 R
ec

al
l 0

 0.2

 0.4

 0.6

 0.8

AU
C

Dav12
Back10
McG13

Li12b
Jurg13

Kong14

Comp14
Li12a

Rout13

 0

 0.2

 0.4

 0.6

5 10 15 20 25 30

Po
st

 C
ov

er
ag

e

Number of days removed from the end of training data
Number of days removed from the end of training data

Figure 3: Performance on each day of the test data

spikes in Fig. 3 bottom). This variance highlights the need
for considering the temporal scale of the testing data in
future geoinference evaluations in order to produce fully-
comparable performance measurements.

8 Future Directions
Our work has identified significant performance differences
among current state-of-the-art network-based geoinference
techniques and as a result, three key area for future work in
the area.

Self-reported location extraction: Prior approaches to
extracting locations from self-reported location fields no
longer perform well on current Twitter data (Cheng, Caver-
lee, and Lee 2010), with self-reported location data only
moderately more prevalent than GPS data despite the choice
in location gazetteer. Future work may increase the quantity
and quality of self-reported locations by incorporating new
toponym resolution techniques – especially those that con-
sider both the user’s posting content to aid in disambiguating
their location field.

Twitter’s temporal dynamics: Methods have yet to ad-
dress the temporal aspects of the social network. As Ex-
periment 3 revealed, these social-network based methods
decline in recall, with an estimated recall half-life of four
months. As such, they must be retrained periodically on new
data. What effect new social relationships should have on
location prediction remains an open question that is increas-
ingly important at longer time scales as users move and form
relationships with new individuals nearby.

Hybrid network- and text-based geoinference: The re-
sults of Experiments 2 and 3 show that network-based meth-
ods alone cannot infer locations for 37% of users –in the best
case– leading to roughly half of all posts being unlocated.
While gathering large amounts of longitudinal data may im-
prove Post Coverage, methods that learn on other sources
of information that the social network are needed to infer
locations for asocial users for which social data is yet un-
available. Such text data may further assist network-based
methods for challenging user types, such as disambiguating
the present location of a mobile user. Hybrid methods com-
bining both social and text information represent a promis-



ing class of solutions, with very recent approaches in this
direction showing promising results (Rahimi et al. 2015).

9 Conclusion
This paper has analyzed the current state of the art for
network-based geoinference techniques. What began as a
routine re-implementation of existing work revealed wide-
spread disparity in the conditions, data, and metrics used
to evaluate these works. Our work has provided three key
contributions towards addressing these issues. First, we
have created the first comprehensive assessment of state of
the art for network-based geoinference. Using a common
real-world test setting, we demonstrated that current meth-
ods differ significantly, with the best performance by meth-
ods whose original testing conditions more closely mirrored
real-world conditions. To compare methods, we identified
three key criteria and corresponding metrics, which fully
capture the performance behavior of each method and allow
for meaningful comparison, both in this and future work.
Furthermore, a number of scalability issues were identified
in these methods for which proposed solutions. All imple-
mentations, testing framework, and evaluation metrics are
released as an open source package developing geoinfer-
ence techniques, available at http://networkdynamics.
org/resources/geoinference/. Second, we show that
the current approach of using self-reported locations as
ground truth yields far fewer ground truth locations than re-
ported in earlier studies and even in the best configuration
for matching these locations to coordinates, systems trained
on self-reported locations suffer a large drop in accuracy,
with the Median-Max error doubling for all but the lowest-
performing systems. Third, we perform the first assessment
of how well geoinference methods do at predicting locations
of future posts, finding that, while accuracy rates only de-
crease slightly, Post Coverage was estimated to drop by half
after a four month period.
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