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Abstract—Geographically annotated social media is ex-
tremely valuable for modern information retrieval. However,
when researchers can only access publicly-visible data, one
quickly finds that social media users rarely publish location
information. In this work, we provide a method which can
geolocate the overwhelming majority of active Twitter users,
independent of their location sharing preferences, using only
publicly-visible Twitter data.

Our method infers an unknown user’s location by examining
their friend’s locations. We frame the geotagging problem as an
optimization over a social network with a total variation-based
objective and provide a scalable and distributed algorithm for
its solution. Furthermore, we show how a robust estimate of the
geographic dispersion of each user’s ego network can be used
as a per-user accuracy measure which is effective at removing
outlying errors.

Leave-many-out evaluation shows that our method is able to
infer location for 101,846,236 Twitter users at a median error
of 6.38 km, allowing us to geotag over 80% of public tweets.

Keywords-Social and Information Networks; Data mining;
Optimization

I. INTRODUCTION

The ability to geospatially index a large volume of Twitter
data is valuable for several emerging research directions. In-
deed, geographic social media analytics have proven useful
for understanding regional flu trends [21], linguistic patterns
[18], election forecasting [28], social unrest [6], and disaster
response [16]. These approaches, however, depend on the
physical locations of Twitter users which are only sparsely
available in public data.

Interestingly, recent work from the computational social
sciences community has established that online social ties
are often formed over short geographic distances [27] [19]
[8]. Because of this, it is possible to approximate the location
of a Twitter user by examining publicly-known locations of
their online friends [11] [31]. Using social network analysis
to solve geolocation problems relies only on public Twit-
ter metadata, which, somewhat counterintuitively, provides
several advantages over content-based approaches. Network-
based geotagging sidesteps difficulties with foreign natural
language processing, ignores noisy Twitter text, and makes
it possible to demonstrate results at previously unreachable
scales. The largest and most accurate geolocation results

currently published have utilized social network analysis
[11] [1].

In this work, we solve network-based geotagging prob-
lems from an optimization viewpoint. Unlike existing meth-
ods which have independently developed node-wise heuris-
tics, we show that a globally-defined and highly-studied
convex optimization can be solved for location inference.
To be precise, we infer user location by solving

min
f
∣∇f ∣ subject to fi = li for i ∈ L (1)

where f = (f1, . . . , fn) encodes a location estimate for each
user, L denotes the set of users who opt to make their
locations, li, public, the total variation on the Twitter social
network is defined by

∣∇f ∣ =∑
ij

wijd(fi, fj) (2)

where d(⋅, ⋅) measures geodesic distance via Vincenty’s for-
mulae, and the edge weights, wij , are equal to the minimal
number of reciprocated @mentions between users i and j.

In other words, we seek a network such that the
weighted sum over all geographic distances between
connected users is as small as possible. This sum, de-
fined in (2) and known in the literature as total variation,
has demonstrated superior performance as an optimization
heuristic for several information inference problems across
a wide variety of fields.

The minimization in (1) leads to a network where con-
nected communities of users are placed into the same city.
Motivation for this heuristic relies on communicative locality
in Twitter which has been demonstrated in previous research
[27] [11] [31] and is further justified by our experiments in
section III-B. Evidence of communicative locality in other
online social networks can be found in [19] [8] and [1].

The social media geotagging problem is relatively new;
total variation minimization, however, is not. Originally
introduced to the computational sciences as a heuristic for
image denoising [23], literature on total variation minimiza-
tion is now truly vast — thousands of papers spanning
several decades. While most of this research has been
confined to imaging processing, recent work has shown that



total variation is valuable to several newer applications, such
as crime modelling [26], graphics [20], and “community
detection” [10]. Very recently, it has been shown that use
of total variation for general transductive learning tasks
outperforms state-of-the-art methods on standard benchmark
datasets [3] [2]. The present work is the first to demonstrate
a theory link between the social media geotagging problem
and total variation minimization.

There are real and immediate practical applications for
our results. From a business perspective, the importance of
Twitter geotagging has recently warranted several commer-
cial offerings12. At least one product3 is based on alignments
between self-reported profile locations and the GeoNames4

database. Our experiments in section IV-A demonstrate that,
even if all nonempty profile locations could be mapped
to unambiguous locations, the coverage of profile-based
geotagging could reach at most 63% of tweet volume. When
nonsensical or ambiguous profile locations are ignored,
our experiments show that the coverage of profile-based
geotagging drops below 20%.

A salient feature of our approach, however, is that we are
unable to estimate within-city motion for individual Twitter
users. Our goal is high-volume static location inference
with city-level accuracy. This may be tolerable for several
applications as research has indicated that users typically
remain within a small radius; cf. section III-F and [4]. Since
it is still unclear if better-than-city-level accuracy is possible
at scale, we restrict our training sets to users who tweet
primarily within the same radius, using their median location
as “home”

Using social networks to infer location makes sense only
if a user’s friends are primarily located within the same
geographic region. We show that the geographic dispersion
of each user’s ego network5,

∼
∇fi = medianj (wijd(fi, fj)) (3)

agrees well with geotag error and therefore provides us with
a per-user confidence measure. Overall error can thus be
controlled by limiting max

∼
∇fi. Our experiments show that

coverage remains high even when restrictions on max
∼
∇fi

are tight.
Solutions to the geotagging problem are most in-

teresting when demonstrated at scale. We exhibit our
method on a network of 110,893,747 Twitter users with
1,034,362,407 connections between them and infer loca-
tions for 101,846,236 users. This is made possible by the
optimization algorithm we employ to solve (1), parallel

1http://blog.gnip.com/twitter-geo-data-enrichment
2http://tweepsmap.com
3http://support.gnip.com/enrichments/profile geo.html
4http://geonames.org
5the “ego network” of a user consists of the user together with the users

they are directly connected to

coordinate descent [22], which we have implemented in a
distributed manner using the Apache Spark cluster comput-
ing framework [32].

To be clear, the contributions of this paper are as follows:
● We show that the social network geotagging problem

can be solved via a globally-defined convex optimiza-
tion

● We develop a novel per-user accuracy estimate
● We demonstrate our results at scale; producing the

largest database of Twitter user locations currently
known in the literature

II. BACKGROUND AND RELATED WORK

Location inference in social media has caught the attention
of several researchers from both academia and industry. Two
major classes of solutions to the geotagging problem are now
prevalent: language-based, and network-based.

A. Language-based Geotagging

Work by [5] and [7] provided methods based on iden-
tifying and searching for location-specific terms in Twitter
text. More recent work by [13] (extended in [14]) builds on
these approaches with ensemble classifiers that account for
additional features such as time zone and volume of tweets
per hour. To the best of our knowledge, [14] showcases the
current state-of-the-art for content-based geotagging: 9,551
test users at 68% city-accuracy. Our goal is similar to that
of [14] in that both works focus on static location inference
with city-resolution accuracy, however, we demonstrate sev-
eral orders of magnitude greater coverage as well as higher
accuracy. Specifically, our leave-many-out validation tests
indicate that we can correctly predict the city a user resides
in with vs 89.7% city-accurate vs. the 68% reported by [14].

Geotagging via natural language processing requires that
users from different geographic regions tweet in different
dialects, and that these differences are great enough to
make accurate location inference possible. Evidence against
this possibility appears in [11], where the author exam-
ined a large Twitter dataset and found minimal agree-
ment between language models and proximity. Additionally,
language-based geotagging methods often rely on sophisti-
cated language-specific natural language processing and are
thus difficult to extend worldwide.

B. Network-based Geotagging

Large-scale language-agnostic geotagging is possible by
inferring a user’s location with the known locations of
their friends. Influential work in this field was conducted at
Facebook Inc. in [1]. Here, the authors infer a user’s home
address with a maximum likelihood estimate that best fits
an empirically observed power law. Surprisingly, the results
of [1] indicate that social network based methods are more
accurate than IP-based geolocation. Since the IP addresses
of Twitter users are never public, and our research involves



public data alone, we can not report any results about
how the present work compares against IP-based Twitter
geolocation.

Geotagging work on Flickr and Twitter by Sadilek et al.
[25] uses social ties to infer location and then studies the
converse problem: using location to infer social ties. They
conclude that location alone is insufficient for this task.
Very recent work by [31] uses network structure as well as
language processing of user profiles to identify “landmark”
users in the United States for whom location inference is
optimal while [24] showcases a similar result on Korean
Twitter users.

Most closely related to our work is that of [11], where
the author developed a node-wise algorithm, “Spatial La-
bel Propagation”, which iteratively estimates Twitter user
locations by propagating the locations of GPS-known users
across a Twitter social network. While not discussed in [11],
it turns out that Spatial Label Propagation is in fact a parallel
coordinate descent method applied to total variation mini-
mization. Later in this work we show how our technique can
reduce to Spatial Label Propagation by removing constraints
on (3). While Spatial Label Propagation was demonstrated
at scale, our study reaches higher coverage and accuracy:
101.8M users at a median error of 6.33km vs. 45.8M users
at a median error of 10km.

Research indicating that Twitter contact is independent of
proximity can be found in [12], where the author examines
GPS-known retweet pairings and finds an average distance of
749 miles between users. Averages, however, are sensitive to
outliers which are often present in social data. In this work,
we will make use of robust statistics to estimate center and
spread for sets of locations.

III. METHOD

A. Data and Network Construction

An appropriate social network is a fundamental part of
our algorithm. Twitter users often “@mention” each other
by appending an “@” to the mentioned user’s name. We
build a social network, G = (V,E), with users as vertices
and @mentions between users as edges.

Reciprocated @mentions indicate social ties. We de-
fine edge weights, wij , of G, the “bidirectional @men-
tion network”, using the minimum number of reciprocated
@mentions between users i and j. The key advantage to
constructing a social graph from @mentions (as opposed
from “followers” or “favourites”) is that it enables us to
build a large social graph from a large collection of tweets
without being burdened by Twitter API rate limiting.

We use a 10% sample of public tweets collected between
April 2012 and April 2014. This amounts to 76.9TB of
json data (uncompressed) and 25,312,399,718 @mentions.
From the complete set of @mentions we built a weighted
and directed network of 8,593,341,111 edges by condens-
ing multiple mentions into weighted edges. Filtering down

to only reciprocated @mentions leaves us with a network
of 1,034,362,407 edges6 and 110,893,747 users. This
bidirected network is the focus of our experiments.

B. Ground Truth User Locations

We define a function, f , which assigns to each user an
estimate of their physical location. Users may opt to make
their location publicly available though cellphone-enabled
GPS or self-reported profile information. For this small set
of users, computation of f is relatively straightforward.

To assign a unique location to a user from the set of
their GPS-tagged tweets, G, we compute the l1-multivariate
median [29] of the locations they have tweeted from:

argmin
x

∑
y∈G

d(x, y) (4)

Our data contains 13,899,315 users who have tweeted
with GPS at least three times. Several of these users are
highly mobile and can not reasonably be assigned a single,
static, location. We filter out users whose median absolute
deviation (cf. (3)) of GPS-annotated tweet locations is over
30km. This leaves with a set of 12,435,622 users whose
location might be known via GPS. However, tweet times-
tamps reveal that 86,243 of these users have at some point
exceeded the flight airspeed record of 3529.6 km/h. Manual
examination of these accounts finds several bots retweeting
worldwide GPS-annotated tweets as well as human users
who suffer GPS malfunctions (e.g. a tweet near (0.0,0.0)
shortly after a valid location). We remove from our training
set any user who has travelled in excess of 1,000 km/h. The
total number of GPS-known users is 12,297,785.

Following this, we extract self-reported home locations
by searching through a list of 51,483 unambiguous location
names for exact matches in user profiles. Users who list
several locations in their profile are not geotagged by this
step, though it is possible to account for such users using a
method found in [31]. When self-reporting users also reveal
their location though GPS, we opt to use their GPS-known
location. We remove self-reports which are over 90 days
old. This provides us with home locations for an additional
15,360,494 users.

The list of 51,483 location names has been optimized for
accuracy on Twitter. Starting with an initial list of 67,711
location names obtained from the GeoNames project, we
examined 12,471,920 GPS-tagged tweets7 from users who
self-reported profile locations and removed location names
from the list when the median discrepancy between GPS
and the reported location was greater than 100km. We have
plotted the resulting discrepancies between GPS and self-
reports in fig. 1.

The total number of users with ground truth locations via
GPS or self-reports is 24,545,425. Denote this set of users

6i.e. a 12% chance of @mention reciprocation
7collected between 2013-01-01 and 2013-04-07



Figure 1: Histogram of discrepancies between GPS and
self-reported profile locations for 1,883,331 users. The
median and mean discrepancies are 7.10 and 318.50 km,
respectively.

by L, and the remaining users in the network by U . The
vertex set of our social network is thus partitioned as

V = L +U (5)

and our goal is to assign a value of f to nodes in U .

C. Global Optimization Algorithm

Our algorithm assigns a location to a user based on the
locations of their friends. To check that online social ties
are well-aligned with geographic distance, we restrict our
attention to GPS-known users and study contact patterns
between them in fig. 2.

Users with GPS-known locations make up only a tiny
portion of our @mention networks. Despite the relatively
small amount of data, we can still see in fig. 2 that online
social ties typically form between users who live near each
other and that a majority of GPS-known users have at least
one GPS-known friend within 10km.

The optimization (1) models proximity of connected
users. Unfortunately, the total variation functional is non-
differentiable and finding a global minimum is thus a
formidable challenge. We will employ “parallel coordinate
descent” [22] to solve (1). Most variants of coordinate
descent cycle through the domain sequentially, updating
each variable and communicating back the result before the
next variable can update. The scale of our data necessitates
a parallel approach, prohibiting us from making all the
communication steps required by a traditional coordinate
descent method.

At each iteration, our algorithm simultaneously updates
each user’s location with the l1-multivariate median of their
friend’s locations. Only after all updates are complete do we
communicate our results over the network.

At iteration k, denote the user estimates by fk and the
variation on the ith node by

∣∇i(fk, f)∣ =∑
j

wijd(f, fkj ) (6)

Parallel coordinate descent can now be stated concisely in
alg. 1.

D. Individual Error Estimation

The vast majority of Twitter users @mention with ge-
ographically close users. However, there do exist several
users who have amassed friends dispersed around the globe.
For these users, our approach should not be used to infer
location.

We use a robust estimate of the dispersion of each
user’s friend locations to infer accuracy of our geocoding
algorithm. Our estimate for the error on user i is the
median absolute deviation of the inferred locations of user
i’s friends, computed via (3). With a dispersion restriction
as an additional parameter, γ, our optimization becomes

min
f
∣∇f ∣ subject to fi = li for i ∈ L and max

i

∼
∇fi < γ (7)

Algorithm 1: Parallel coordinate descent for dispersion-
constrained TV minimization.

Initialize: fi = li for i ∈ L and parameter γ
for k = 1 . . .N do

parfor i :
if i ∈ L then

fk+1i = li
else

if
∼
∇fi ≤ γ then
fk+1i = argmin

f
∣∇i(fk, f)∣

else
no update on fi

end
end

end parfor
fk = fk+1

end

Restricting the maximum allowed value of
∼
∇fi during

each update ensures that only reliable locations are prop-
agated through subsequent iterations. In alg. 1 we refuse
to update locations for users whose friends are dispersed
beyond a given threshold.

The argument that minimizes (6) is a weighted l1-
multivariate median of the locations of the neighbors of
node i. By placing this computation inside the parfor of
alg. 1 and removing any restriction on γ, we are able to
reproduce the “Spatial Label Propagation” algorithm of [11]



(a) Minimum distance to a friend (b) Median distance to a friend (c) Maximum distance to a friend

Figure 2: Study of contact patterns between 953,557 users who reveal their location via GPS and are present in each of
the bidirectional @mention network (red), bidirectional @mention network after filtering edges for triadic closures (green),
and the unfiltered unidirectional @mention network (black).

Listing 1: Distributed implementation of alg. 1 using the
Spark framework [32]

1 val edgeList = loadEdgeList()
2 var userLocations = loadInitialLocations()
3 for (k <- 1 to N) {
4 val adjListWithLocations = ⤦

edgeList.join(userLocations) .keyBy(x => ⤦
x._2).groupByKey()

5 val updatedLocs = adjListWithLocations.map(x ⤦
=> (x._1, l1Median(x._2), dispersion(x._2)))

6 userLocations = updatedLocs.filter(x => x._3 < ⤦
GAMMA)

7 }
8 return userLocations

as a coordinate descent method designed to minimize total
variation.

While several researchers have worked with parallel co-
ordinate descent, existing convergence results are difficult to
apply. This is in part due to the fact that most convergence
studies assume Euclidean space while our algorithms involve
metrics on the surface of a sphere. We also face the problem
of ensuring that the ground truth users fully retain their
initial location for all iterations, which prohibits us from
working with an l2-penalized unconstrained problem as is
often studied in theoretical papers.

E. Implementation Remarks

The Apache Spark cluster computing framework [32] was
used to implement alg. 1. Spark allows one to distribute data
in cluster memory by making use of resilient distributed
datasets (referred to as RDDs) and operate on these datasets
with arbitrary Scala code.

Our technique is sketched in Listing 1. Our network
and user locations are stored in the RDDs edgeList,
and userLocations. Computations on these RDDs make
use of all available cluster cpu resources. The parfor of
alg. 1 can be implemented with a straightforward map and

Figure 3: Empirical CDF of activity radii for GPS-known
users. For each of the 13,899,315 users with 3 or more GPS-
annotated tweets, we compute their home location using the
median of their tweet locations and define activity radii using
the mean and median distances from home.

filter. Communicating the updated locations across the
network is accomplished with a join on the edge list,
followed by a groupByKey, which sets up an adjacency
list for the next map.

An implementation of alg. 1 taking advantage of more
advanced distributed graph processing techniques, such as
the Pregel model [15] or GraphX [30], is a direction for
future work.

F. Mobility Considerations

The technique outlined above is only useful for static lo-
cation inference. Fast-moving users with large activity radii
will be tagged incorrectly by our method. Here, we study the
appropriateness of static user geotagging by restricting our



Iteration Test users Test users
added

Median
error (km)

Median error on
new test users

1 771,321 771,321 5.34 5.34
2 926,019 154,698 6.02 12.31
3 956,705 30,686 6.24 45.50
4 966,515 9,810 6.32 150.60
5 971,731 5,216 6.38 232.92

Table I: Geolocated users and accuracy for each iteration.
The first iterations produce the most accurate geotags and
the highest coverage.

attention to GPS-annotated tweets and reporting statistics on
activity radii of these users.

For the 13,899,315 users with three or more GPS-
annotated tweets (cf. section III-B), we define a home
location using the median of their tweet locations and plot
empirical cumulative distribution functions describing the
mean and median distances from home in fig. 3. The data
indicates that large activity radii exist, but are atypical of
Twitter users.

The presence of Twitter users with large activity radii
is expected. Several recent quantitative studies of mobility
patterns in public social media have confirmed that distance
from home is decisively fails to follow a normal distribution.
Power law, lognormal [17], gravity law [9], and radiation
laws have been studied. What this means for our research is
that outliers are unavoidable in geographic social data and
the use of robust statistics is a must.

Large activity radii correspond to faster moving users.
Timestamps on the GPS-annotated tweets reveal the median
speed of a Twitter user is .02 km/h (average speed 233.63
km/h). For users with an activity radius over 20km, the
median jumps an order of magnitude to 0.20 km/h (average
speed 1024.04 km/h). Fast-moving accounts may be inhu-
man and not geotaggable. For example, the maximum speed
attained by any Twitter user in our data was 67,587,505.24
km/h, slightly more than 30x the escape velocity from the
surface of the Sun.

IV. RESULTS

We run our optimization on the bidirectional @mention
network described in section III-A. Results are reported after
5 iterations of alg. 1, though high coverage can be obtained
obtained sooner (cf. table I). The parameter γ was set to
100km after experimenting with different values (cf. fig. 6
and fig. 8).

A. Coverage

To assess coverage, we examined 37,400,698,296 tweets
collected between April 2012 and April 2014. These tweets
were generated by 359,583,211 users.

Active Twitter users are likely present in the @mention
network and are therefore likely geocoded by our algorithm.
In fig. 4, we grouped users by activity level and, for each
group, plotted the probability that a user is geolocated

Figure 4: Fraction of geolocated users as a function of ac-
tivity level. The probability that a user reveals their location
via GPS (green) or self-reports (blue) changes little. The
probability that a user is geotagged by our method (red) is
dramatically higher for users who tweet more often. Error
bars (grey) display the standard error of the mean at each
activity level and are largest for high activity levels (where
the number of sample points is small).

Figure 5: Log-log plot describing the total number of users
as a function of activity level. A large fraction of users
quickly lose interest in Twitter after generating a small
number of tweets. As observed in fig. 4, these users are
difficult to geocode with the proposed method.



Tweet volume Account volume
GPS 584,442,852 (1.6%) 12,297,785 (3.4%)
unambiguous

profile 3,854,169,186 (10.3%) 45,284,996 (12.6%)

any nonempty
profile 23,236,139,825 (62.1%) 164,020,169 (45.6%)

proposed method 30,617,806,498 (81.9%) 101,846,236 (28.3%)

Table II: Summary of coverage results. The sample data con-
sisted of 37,400,698,296 tweets generated by 359,583,211
users. We are able to geotag 81.9% of tweets, more than is
possible even if all nonempty self-reported profile locations
were unambiguous.

by three different methods. The probability that a user is
geocoded by our method increases dramatically as a function
activity level. The probability that a user is geocoded via
GPS or self-reports, however, appears to be unrelated to
activity level. We summarize coverage results in table II.

The statistics in fig. 4 become noisy for extremely active
users. This is due to the fact that only a small number of
users tweet this often (cf fig. 5). Given that we collect only
10% of Twitter, activity levels over 101 in our chart contain
users who have been tweeting over 100 times per day over a
two-year period which may indicate that they are not human.

B. Accuracy

Accuracy is assessed using leave-many-out cross-
validation with a 10% hold out set. From the 12,297,785
users who reveal GPS locations, we randomly selected
1,229,523 test users for exclusion from L. After 5 iterations
of alg. 1 with γ = 100km, we were able to infer location for
971,731 test users with a median error of 6.38km and a
mean error of 289.00km.

Reverse-geocoding to cities with a population over 5,000
shows that our method was accurate to city-resolution for
770,498 (89.7%) of test users. We remark here that eval-
uations based on semantic distance (which are common in
language-based geotagging) can be difficult to compare with
those based on physical distance as reverse-geocoding can
introduce errors of its own. For example, depending on the
convention used, a minimum population size of 5,000 would
discriminate between the 48 different barrios of Buenos
Aires which are physically close yet semantically distinct.

Inferring location for users with geographically dispersed
ego networks leads to large errors. In fig. 6 we use data
from a run with no restriction on max

∼
∇fi (a.k.a Spatial

Label Propagation) and observe bimodal error distributions
when restrictions on max

∼
∇fi are loose. When we account

for ego network dispersion with γ in (7) we are able to
eliminate outlying errors. The effect of modifying γ is
further illustrated with box plots in In fig. 7.

Coverage is not substantially decreased by restricting
ego network dispersion. Our experiments with tuning γ

Figure 6: Histogram of errors with different restrictions on
the maximum allowable geographic dispersion of each user’s
ego network in km (i.e. γ in (7) ). We are able to remove
outlying errors by controlling γ.

Figure 7: Box plots describing the errors for different values
of γ. The ends of the whiskers are drawn at ±1.5 times the
interquartile range.

are visible in fig. 8 where we observe that the fraction of
geolocated users remains high even when γ is made small.

V. CONCLUSION

We have presented a total variation-based algorithm for
inferring the home locations of millions of Twitter users. By
framing the social network geotagging problem as a global
convex optimization, we have connected much recent work
in computational social science with an immense body of
existing knowledge.

Additionally, we have developed a novel technique to
estimate per-user accuracy of our geotagging algorithm and
used it to ensure that errors remain small.



(a) Mean error control via γ

(b) Median error control via γ

Figure 8: Coverage penalties and accuracy gains as a
function of γ. In fig. 8a we observe that a restriction of
γ = 100km reduces mean error to 200km while retaining
80% of users in our geolocation database. In fig. 8b we
see that median error is less responsive to γ, indicating that
restrictions on γ primarily control outlying errors.

Our results have been demonstrated at scale. To the best
of our knowledge, this is the largest and most accurate
dataset of Twitter user locations known. The fact that it is
constructable from publicly visible data opens the door for
many future research directions.
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